

Introduction aux microondes (hyperfréquences) et aux antennes

Anja Skrivervik anja.skrivervik@epfl.ch, 021 693 4635

Contenu du cours

- Introduction et applications
- Propagation guidée (lignes de transmission généralisées)
- Théorie des circuits microondes
- Introduction aux composants distribués
- Introduction aux Antennes
- Systèmes de transmission

Forme du cours

- ex cathedra
- Exercices
- Sessions de simulation numérique
- Notes de cours, exercices, corrigés et slides accessibles sur Moodle
- Examen: Il s'agit d'un cours à contrôle continu obligatoire. Les deux tests auront lieu les 4 novembre et 14 décembre.

Informations pratiques

- Cours: lundi de 08:15-10:00
- Exercices: lundi de 10:15-11:00
- Informations: anja.skrivervik@epfl.ch / 34635
- Assistants: Adrian Fernandez Carnicero et Behnaz Bakhtiari
- Examen: contrôle continu obligatoire. Les deux tests auront lieu les 4 novembre et 14 décembre Documents: sur moodle. Notes de cours, copies des slides, exercices et corrigés
- Sessions de simulation numérique en salle ELG022

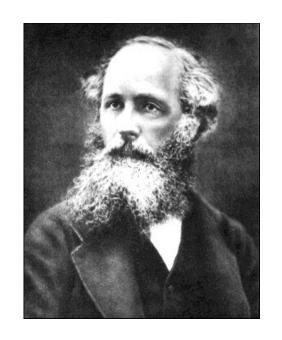
1872	Publication de "a treatise on electricity and magnetism" par James Clerk Maxwell	
1887	Publication des commentaires de Oliver Heaviside's sur le travail de Maxwell	
1887	Lord Rayleigh prouve théoriquement le concept des guides d'ondes	
1891	Vérification expérimentale de la théorie de Maxwell par Heinrich Hertz	
1901	Premier lien sans fils transatlantique par Guglielmo Marconi	
1903	Service régulier de télégraphe sans fils	
1918	Premiers générateurs à tube	
1920	Première utilisation du changement de fréquences (hétérodynage) dans les émetteurs et les récepteurs	
1921	Premier lien transatlantique en ondes moyennes	
1938	Premier téléphone portable (Motorola)	

1936	Redécouverte simultanée des guides d'ondes par G.C. Southworth et W.L. Barrow	
1938-19	45 : Recherche intensive sur les RADAR	
1948	Théorie des filtres distribués par Richards	
1950	Premiers filtres à cavité	
1950	Introductions des lignes de transmission planaires (stripline, puis microstrip)	
1950	Apparition des amplificateurs TWT	
1951	951 Apparition des premiers transistors microonde	
1970	Premiers MMICs	
1971	Premiers outils de CAD	

1990: Début de la téléphonie mobile digitale (2G)

1990-2000 : Boom de la téléphonie mobile

2000-2010: début de l'Internet of Things


2007: Premiers smartphones

Equation de Maxwell (style télécom)

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

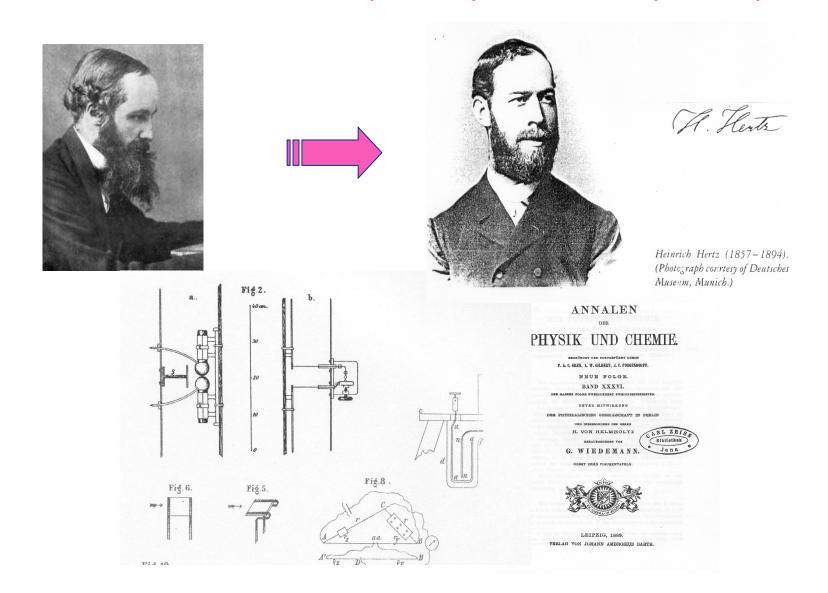
$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

Des courants électrique variant Dans l'espace et le temps agissant dans un milieu spécifique crée des ondes électromagnétiques

Maxwell - Heaviside

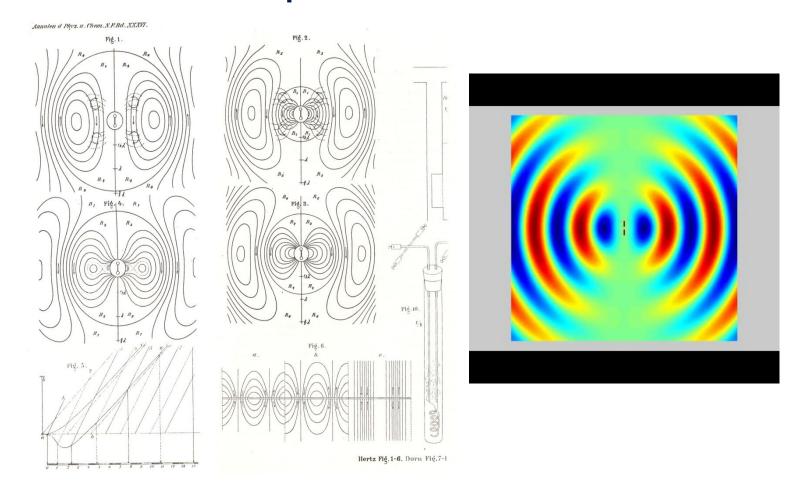
$$\frac{dQ}{dz} - \frac{dR}{dy} = \mu \frac{d\alpha}{dt}$$

$$\frac{dP}{dy} - \frac{dQ}{dx} = \mu \frac{d\gamma}{dt}$$


$$\frac{dR}{dx} - \frac{dP}{dz} = \mu \frac{d\beta}{dt}$$

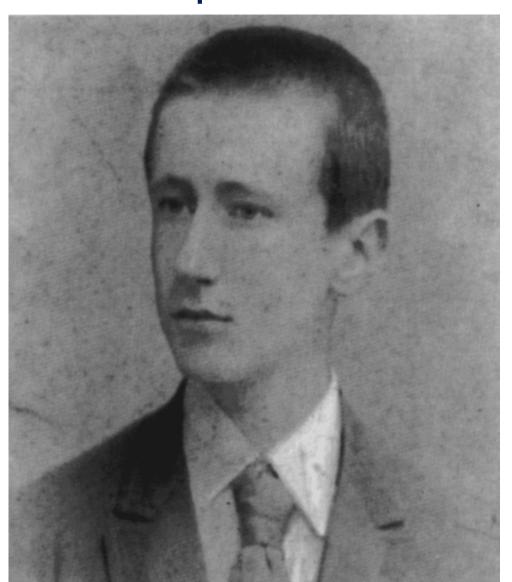
$$\frac{dQ}{dz} - \frac{dR}{dy} = \mu \frac{d\alpha}{dt}
\frac{dP}{dy} - \frac{dQ}{dx} = \mu \frac{d\gamma}{dt}
\frac{dR}{dx} - \frac{dP}{dz} = \mu \frac{d\beta}{dt}
p = \frac{1}{4\pi} \left(\frac{d\gamma}{dy} - \frac{d\beta}{dz} - \frac{1}{\varepsilon^2} \frac{dP}{dt} \right)
q = \frac{1}{4\pi} \left(\frac{d\alpha}{dz} - \frac{d\gamma}{dx} - \frac{1}{\varepsilon^2} \frac{dQ}{dt} \right)
r = \frac{1}{4\pi} \left(\frac{d\beta}{dx} - \frac{d\alpha}{dy} - \frac{1}{\varepsilon^2} \frac{dR}{dt} \right)$$

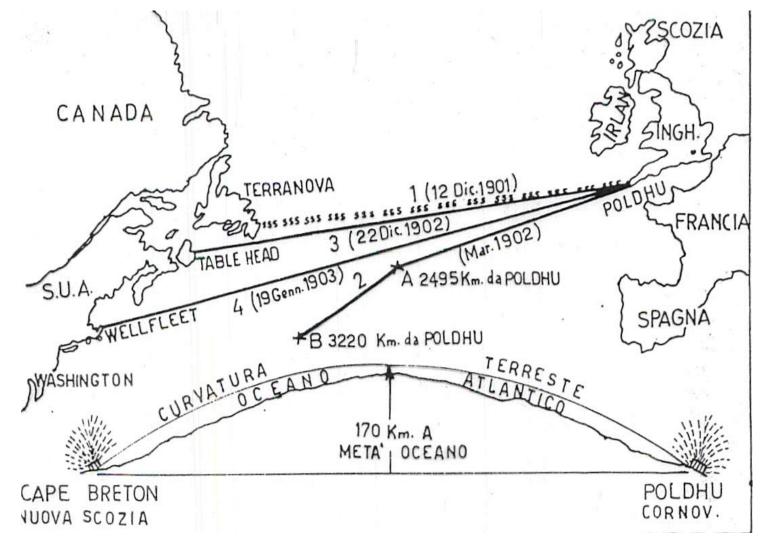
$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$



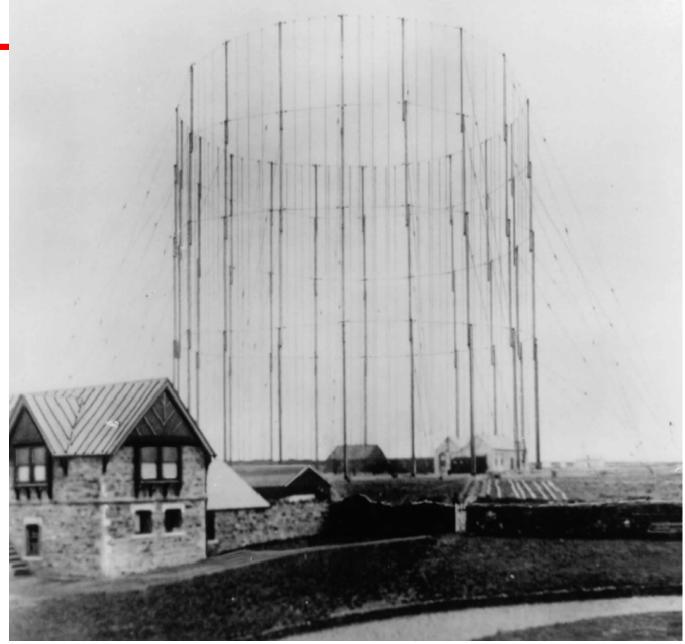
De Maxwell (1865) à Hertz (1888)

Dipôle de Hertz




1872	Publication de "a treatise on electricity and magnetism" par James Clerk Maxwell	
1887	Publication des commentaires de Oliver Heaviside's sur le travail de Maxwell	
1887	Lord Rayleigh prouve théoriquement le concept des guides d'ondes	
1891	Vérification expérimentale de la théorie de Maxwell par Heinrich Hertz	
1901	Premier lien sans fils transatlantique par Guglielmo Marconi	
1903	Service régulier de télégraphe sans fils	
1918	Premiers générateurs à tube	
1920	Première utilisation du changement de fréquences (hétérodynage) dans les émetteurs et les récepteurs	
1921	Premier lien transatlantique en ondes moyennes	
1938	Premier téléphone portable (Motorola)	

Un pionnier : Marconi

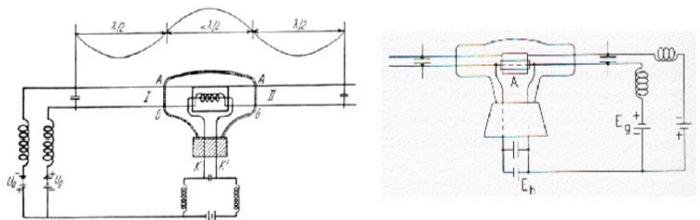


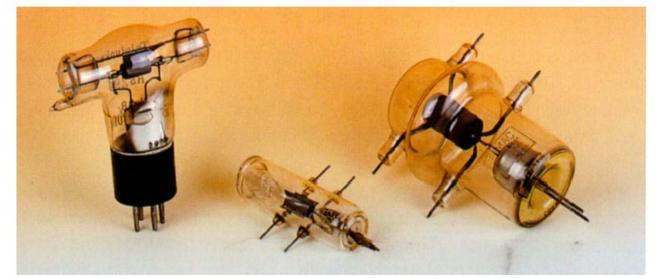
Premières transmissions transatlantiques: 1901-1903

- 1- Poldhu St. John 12 décembre 1901 3400 km
- 2- Poldhu Philadelphia (bâteau) Mars 1902 découverte de l'effet de nuit
- 3- Activation du lien Glace Bay Poldhu 22 December 1902
- 4- Activation du lienCape Cod Poldhu 19 January 1903

EPFL

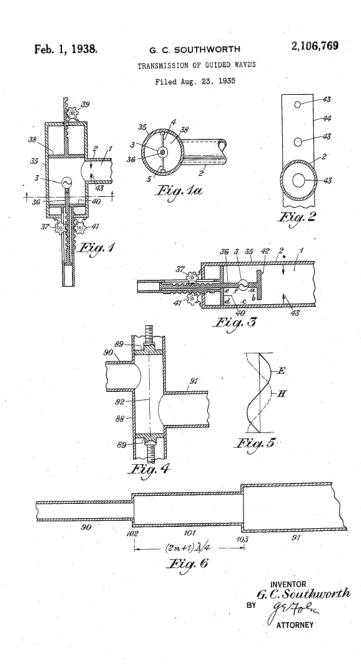
Photographie de l'antenne conique originale installée à Poldhu, Cornouaille (d'après BAE **Systems** Marconi Research Centre, Chelmsford, Essex)


Une antenne de Guglielmo Marconi (1901)



1872	Publication de "a treatise on electricity and magnetism" par James Clerk Maxwell	
1887	Publication des commentaires de Oliver Heaviside's sur le travail de Maxwell	
1887	Lord Rayleigh prouve théoriquement le concept des guides d'ondes	
1891	Vérification expérimentale de la théorie de Maxwell par Heinrich Hertz	
1901	Premier lien sans fils transatlantique par Guglielmo Marconi	
1903	Service régulier de télégraphe sans fils	
1918	Premiers générateurs à tube	
1920	Première utilisation du changement de fréquences (hétérodynage) dans les émetteurs et les récepteurs	
1921	Premier lien transatlantique en ondes moyennes	
1938	Premier téléphone portable (Motorola)	

Tubes microondes

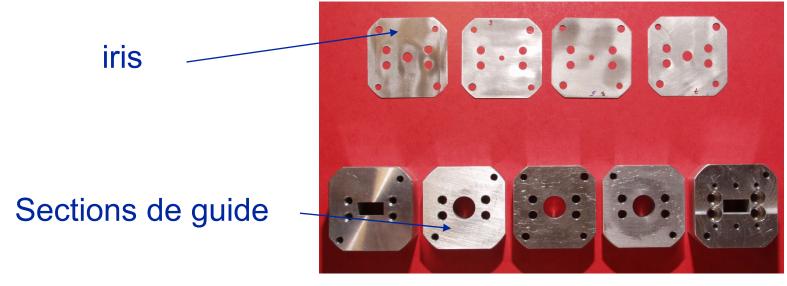

Tube à champ retardé RS296 et son circuit(Kühle 1932 at Telefunken)

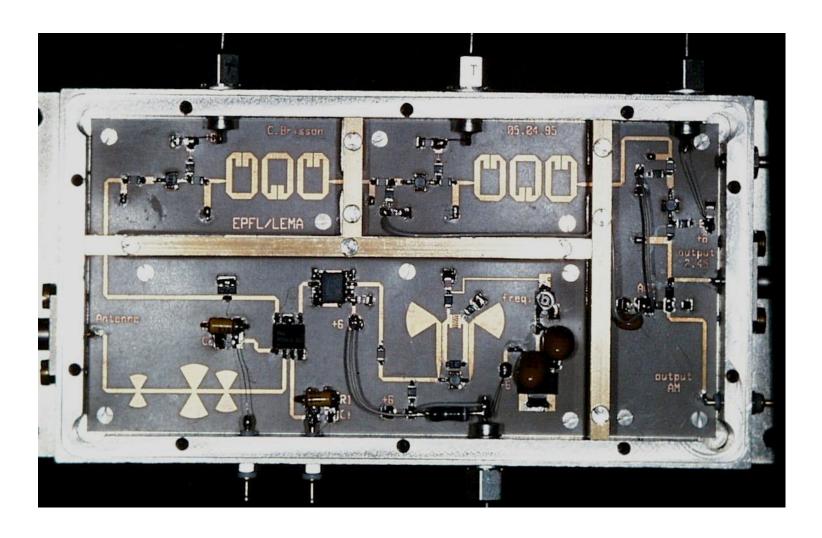
"Hammer Tube" [8,11]. La photo montre aussi les tubes à champ retardé 8012 de RCA (centre) et VT 127 A de Eimac (droite)

1936	Redécouverte simultanée des guides d'ondes par G.C. Southworth et W.L. Barrow	
1938-19	45 : Recherche intensive sur les RADAR	
1948	Théorie des filtres distribués par Richards	
1950	Premiers filtres à cavité	
1950	Introductions des lignes de transmission planaires (stripline, puis microstrip)	
1950	Apparition des amplificateurs TWT	
1951	1 Apparition des premiers transistors microonde	
1970	Premiers MMICs	
1971	Premiers outils de CAD	

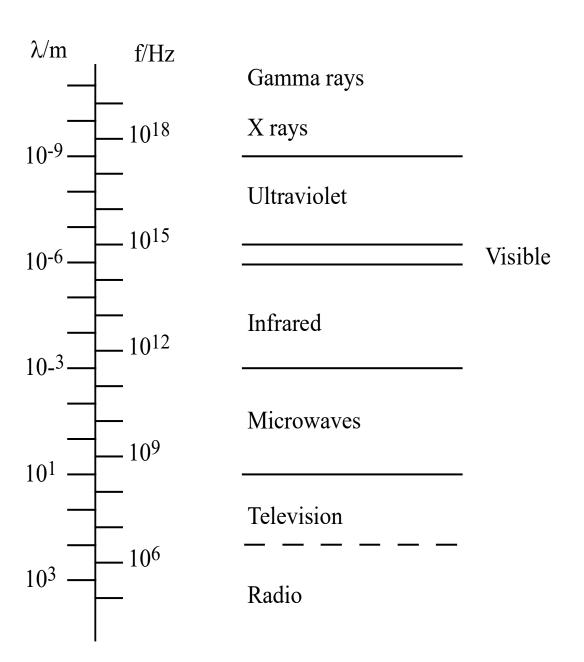


1st page du brevet de Southworth


Exemple d'un filter distribué: LPF réalisé en technologie microruban


Filtre à cavités (vue explosée)

example de circuit microruban: émetteur récepteur complet à 2.45 GHz



Définition des microondes

Fréquence (f)	300 MHz-300 GHz
Période (T)	3 ns - 3 ps
Longueur d'onde (λ)	1 m - 1 mm
Energie (hf)	1.2 10 ⁻⁶ eV - 1.2 10 ⁻³ eV

EPFL

Band	Frequenc y
L	1-2 GHz
S	2-4 GHz
C	4-8 GHz
X	8-12 GHz
Ku	12-18 GHz
K	18-26 GHz
Ka	26-40 GHz
Q	40-60 GHz
E	60-90 GHz

Properiétés des microondes

- Bande bassante
 - 1% de 10 GHz = 100 MHz, mais 1% of 100 MHz = 1MHz
- Transparence de la lonosphère
 - Satellites

Ionosphère

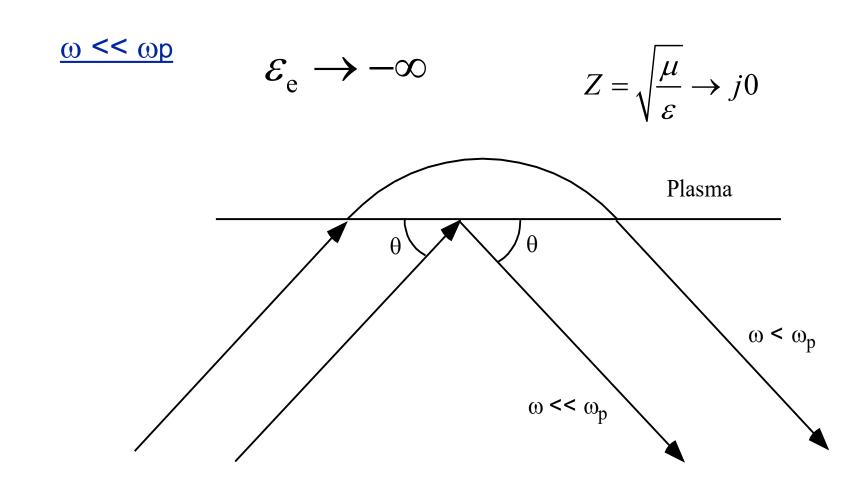
4 couches: D, E, F1, F2

altitude: environ 70-800 km

$$\varepsilon_e = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right)$$

$$\omega_p = \sqrt{\frac{Nq^2}{m\varepsilon_0}}$$

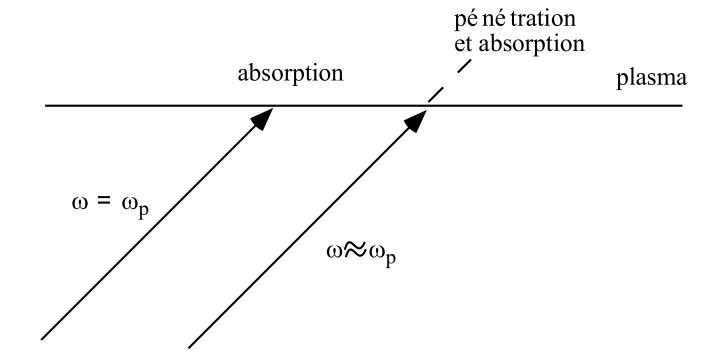
N: nombre de ions/volume


q: charge de l'electron

m: masse de l'electron

ε0 = 8.854 10-12 As/Vm : permittivité de l'espace libre.

Ionosphère



Ionosphère

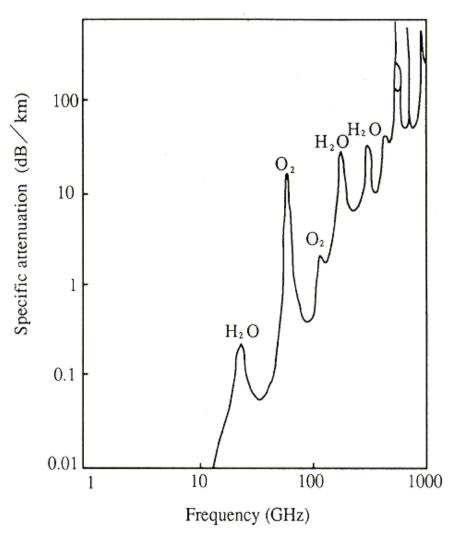
$$\omega = \omega p$$

$$\varepsilon_{\rm e} \to 0$$

$$k = \omega \sqrt{\varepsilon \mu} = 0$$

Ionosphere

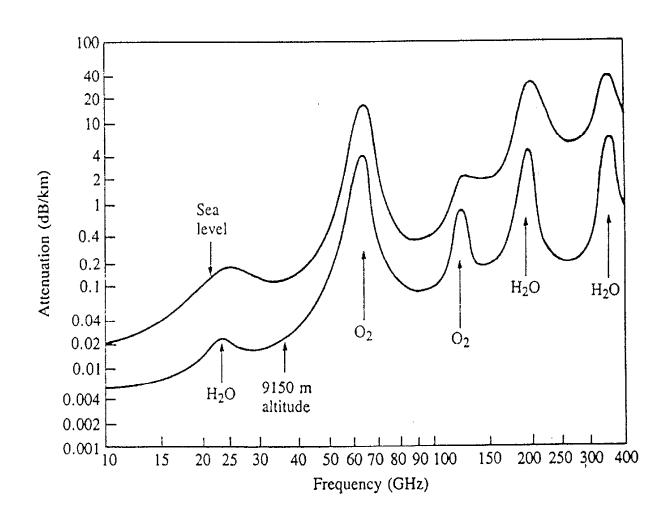
 $\overline{\omega} >> \omega D$ $\varepsilon_{\rm e} \to 1$ $k = \omega \sqrt{\varepsilon \mu} = k_o$ air plasma $\omega >> \omega_p$ $\omega > \omega_{\rm p}$ air



Propriétés des microondes

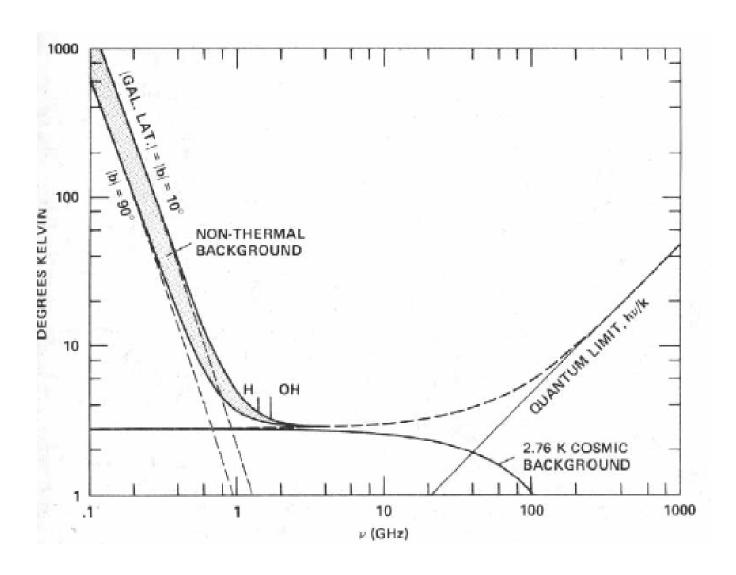
- Transparence de l'atmosphère jusqu'à 10 GHz
- Minimum de bruit électromagnétique entre 1 et 10 GHz, amplificateurs bas bruit

Atmosphère

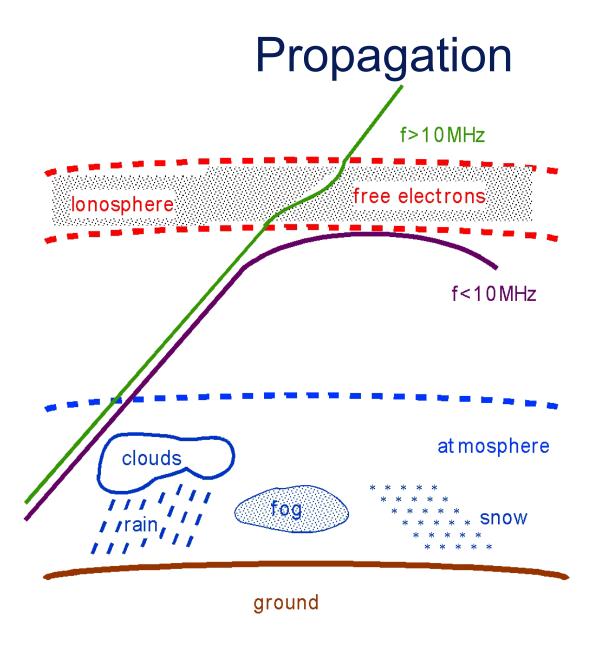

Utilisation stratégique de l'absorption!

détéction de la pollution depuis les satellites

Fig.3.2.1 Microwave absorption due to atmospheric gases



Atmosphère



Bruit

Lien avec Mars

- Mission Mars Pathfinder: 1996
- Distance Terre-Mars: 228'000'000 km

Formule de Friis:

$$P_r = P_f \cdot G_1 \cdot G_2 \cdot (\lambda/4\pi L)^2$$

EPFL

De la Terre à Mars

- Frequence : 7.175 GHz (λ = 41.8 mm)
- Gain de l'antenne terrestre : 4'265'795
 - $\emptyset = 70 \text{ m}$
- Gain de l'antenne sur le satellite : 13.8

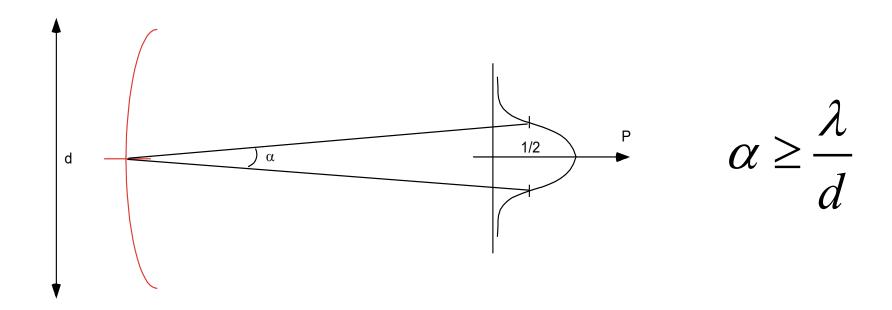
- Puissance transmise depuis: 22 kW
 - (une petite voiture)
- Puissane reçue sur Mars: 3.16 10⁻¹⁶ W
 - (Pas grand chose)

De Mars à la Terre

- Frequence : 8.425 GHz (λ = 35.6 mm)
- Gain de l'antenne terrestre : 25'118'864
- Gain de l'antenne sur le satellite: 141
- Puissance émise sur Mars: 13 W
 - (une lampe basse consommation)
- Puissance recue sur la Terre: 7 .10⁻¹⁸ W
 - (Presque rien !!)

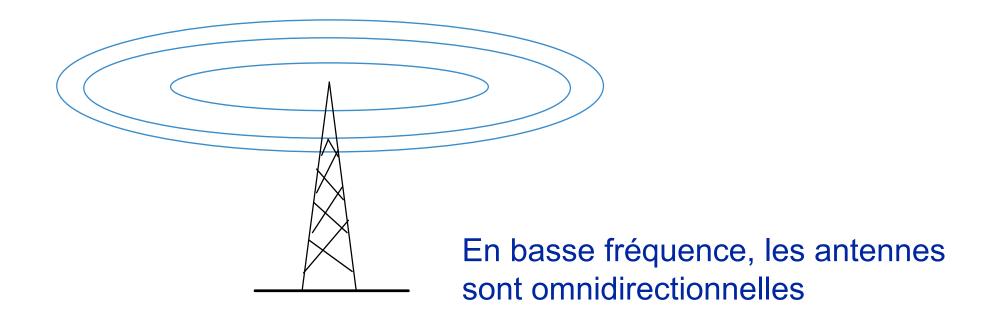
Propriétés des microondes

- Directivité des antennes
- Réflexions sur les obstacles
 - Surfaces effectives, radar
- Interaction avec la matière
 - Chauffage, mesure
- Rayonnement non ionisé
 - ne cause pas de mutation
- Fréquences d'oscillation stables
 - Horloges atomiques et références en fréquences



Définition des microondes

Fréquence (f)	300 MHz-300 GHz	
Period (T)	3 ns - 3 ps	
Longueur d'onde	1 m - 1 mm	
Energie (hf)	1.2 10-6eV - 1.2 10-3eV	

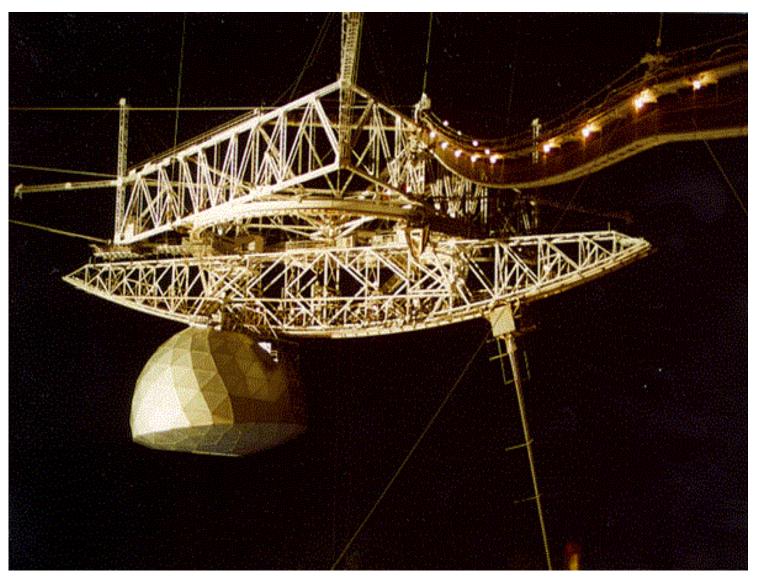


Directivité des antennes

Directivité des antennes

Directivité des antennes

Aux fréquences élevées, les antennes peuvent être directives


Antenne d'Arecibo

diamètre: 305 m!

Excitation de l'antenne d'Arecibo

Image google earth

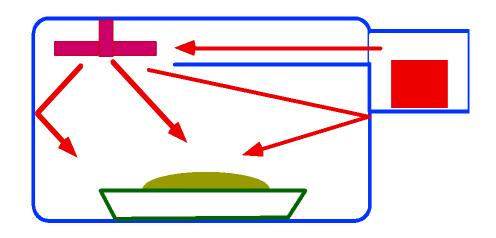
Largeur de faisceau de l'antenne d'Arecibo

• 50 MHz, λ =6m and α =1.12°

• 10GH, λ =3cm and α =0.0056°

Propriétés des microondes

- Directivité des antennes
- Réflexions sur les obstacles
 - Surfaces effectives, radar
- Interaction avec la matière
 - Chauffage, mesure
- Rayonnement non ionisé
 - ne cause pas de mutation
- Fréquences d'oscillation stables
 - Horloges atomiques et références en fréquences

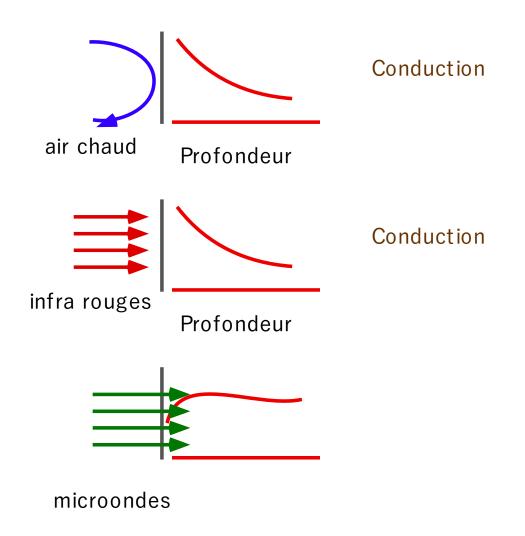


Definition des microondes

Frequence (f)	300 MHz-300 GHz	
Période (T)	3 ns - 3 ps	
Longueur d'onde	1 m - 1 mm	
Energie (hf)	1.2 10-6eV - 1.2 10-3eV	

Interaction avec la matière: Chauffage microonde

L'onde pénètre dans la matière et génère de la chaleur



Interaction avec la matière: Chauffage microonde

- Applicateurs :
 - Cavités
 - Onde progressive
 - Onde lente
 - Antenne
- Principe :
- L'onde est absorbée par l'eau. L'absorption décroit lorsque la température croit

Interaction avec la matière: Chauffage microonde

Interaction avec la matière: Chauffage microonde. Avantages

- Bonne efficacité (50% de la puissance est transférée à l'élément à chauffer)
- Chauffage sélectif
 - Céréales ou insectes
 - électrons et ions
- Coûts et maintenance modérés
- Moins de volume de stockage, car le chauffage est plus rapide
- Pas de nécessité de préchauffage

Interaction avec la matière: Chauffage microonde. Inconvénients

- Cher à développer
- Grillage impossible
- Difficulté à évacuer des solvants (industrie d'impression)
- Nécessite un personnel qualifié
- Nécessite un haut niveau de sécurité

Propriétés des microondes

- Directivité des antennes
- Réflexions sur les obstacles
 - Surfaces effectives, radar
- Interaction avec la matière
 - Chauffage, mesure
- Rayonnement non ionisé
 - ne cause pas de mutation
- Fréquences d'oscillation stables
 - Horloges atomiques et références en fréquences

Definition des microondes

Frequence (f)	300 MHz-300 GHz	
Période (T)	3 ns - 3 ps	
Longueur d'onde	1 m - 1 mm	
Energie (hf)	1.2 10-6eV - 1.2 10-3eV	

Effets biologiques: ionisation

Énergie de cohésion moléculaire

Туре	kJ/mole	eV/atom
ionic	750	7800
dipolar	~20	207
Van der Waals	10	103
covalent		2,5

Dans les microondes, l'énergie d'un photon vaut:

Effets biologiques: effets thermiques

- Les limites existent depuis longtemps
 - USA: ~10 mW/cm2 = 100 W/m2
 - Russie : $\sim 10 \, \mu \text{W/cm2} = 0.1 \, \text{W/m2}$
- Diathermie: 1-10 kW/m2!!
- Flux solaire: 1 kW/m2 (au niveau du sol)

LES ONDES ÉLECTROMAGNÉTIQUES, SONT-ELLES DANGEREUSES?

(1)

Energie à niveau MICROSCOPIQUE

E = hf

(constante de Planck

fois fréquence)

		Longueur	Facteur de
	Fréquence	d'onde	protection
Radio FM	100 MHz	3 m	800'000
Natel	1 GHz	30 cm	80'000
TV Sat	10 GHz	3 cm	8000
Radar	100 GHz	3 mm	800
Infrarouge	10 THz	3 microns	8
Lumiere visible	500 THz	600 nm	4
Ultraviolet UVA	1000 THz	300 nm	2
Ultraviolet UVB	10000 THz	30 nm	0.2
Rayons X	Million THz	0.3 nm	0.0002
Rayons gamma	plus	moins	moins

LES ONDES ÉLECTROMAGNÉTIQUES, SONT-ELLES DANGEREUSES

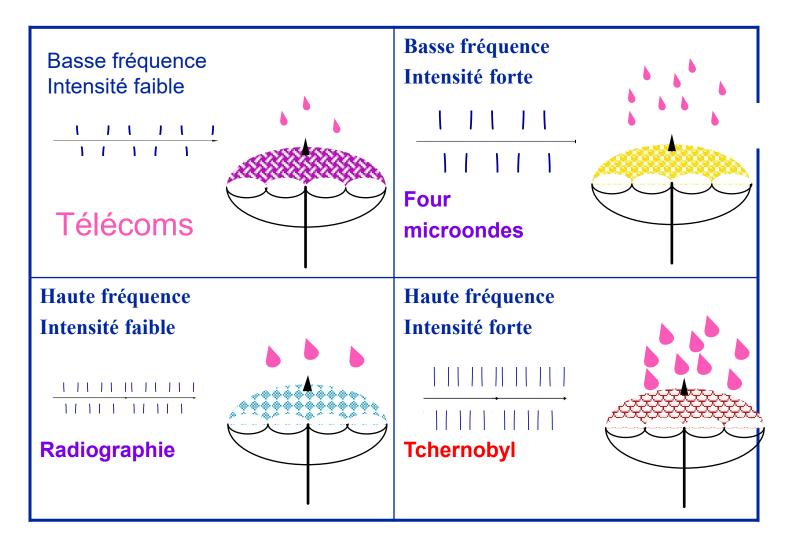
(2)

DENSITÉ de PUISSANCE à NIVEAU

MACROSCOPIQUE

P = E H =

champ électrique x champ magnétique


 $[mW/cm^2]$

Dans un four microondes	500
Radar aéroport à 10 m	300
Radiation solaire hors atmosphère	140
Danger évident	>100
Effets systématiques	>50
Soleil, bonne journée de ski	10
FCC Public Exposure Standard	0.5
Bon NATEL dans la tête	0.3
Ampoule de 60 W à 1 m	0.02
Station NATEL bien fichue	5E-04
Émetteur radio FM à 10 Km	1E-04
Satélite TV au niveau de la rue	1E-06

Analogie Ondes électromagnétiques = Pluie

Fréquence = taille des gouttes ; Puissance = concentration des gouttes

Biological effects: effets non thermiques

- Sujet à controverse depuis 50 ans
 - Existent-ils ? (probablement)
 - Sont ils domageables? (probablement pas)
- Dans le doute:
- Baisser les valeurs limites légales